110,835 research outputs found

    Cloud Storage Performance and Security Analysis with Hadoop and GridFTP

    Get PDF
    Even though cloud server has been around for a few years, most of the web hosts today have not converted to cloud yet. If the purpose of the cloud server is distributing and storing files on the internet, FTP servers were much earlier than the cloud. FTP server is sufficient to distribute content on the internet. Therefore, is it worth to shift from FTP server to cloud server? The cloud storage provider declares high durability and availability for their users, and the ability to scale up for more storage space easily could save users tons of money. However, does it provide higher performance and better security features? Hadoop is a very popular platform for cloud computing. It is free software under Apache License. It is written in Java and supports large data processing in a distributed environment. Characteristics of Hadoop include partitioning of data, computing across thousands of hosts, and executing application computations in parallel. Hadoop Distributed File System allows rapid data transfer up to thousands of terabytes, and is capable of operating even in the case of node failure. GridFTP supports high-speed data transfer for wide-area networks. It is based on the FTP and features multiple data channels for parallel transfers. This report describes the technology behind HDFS and enhancement to the Hadoop security features with Kerberos. Based on data transfer performance and security features of HDFS and GridFTP server, we can decide if we should replace GridFTP server with HDFS. According to our experiment result, we conclude that GridFTP server provides better throughput than HDFS, and Kerberos has minimal impact to HDFS performance. We proposed a solution which users authenticate with HDFS first, and get the file from HDFS server to the client using GridFTP

    Low-Cost High-Sensitivity Strain and Temperature Sensing Using Graded-Index Multimode Fibers

    Get PDF
    We report a low-loss, low-cost high-sensitivity all-fiber strain and temperature sensor based on mode interference in graded-index multimode fibers. Blueshifts with strain and temperature sensitivities of 18.6 pm/microstrain and 58.5 pm/°C have been observed. Experimental results show that smaller core diameter graded-index fibers display greater strain-induced peak wavelength shifts than larger core diameter fibers

    Dynamical chiral symmetry breaking in QED3_{3} at finite density and impurity potential

    Full text link
    We study the effects of finite chemical potential and impurity scattering on dynamical fermion mass generation in (2+1)-dimensional quantum electrodynamics. In any realistic systems, these effects usually can not be neglected. The longitudinal component of gauge field develops a finite static length produced by chemical potential and impurity scattering, while the transverse component remains long-ranged because of the gauge invariance. Another important consequence of impurity scattering is that the fermions have a finite damping rate, which reduces their lifetime staying in a definite quantum state. By solving the Dyson-Schwinger equation for fermion mass function, it is found that these effects lead to strong suppression of the critical fermion flavor NcN_c and the dynamical fermion mass in the symmetry broken phase.Comment: 8 pages, 4 figure
    • …
    corecore